

https://doi.org/10.69639/arandu.v12i4.1710

Análisis y validación del modelo de enfriamiento de Newton en materiales metálicos: un enfoque de modelado matemático aplicado a la ingeniería

Analysis and Validation of Newton's Cooling Model in Metallic Materials: A Mathematical Modeling Approach Applied to Engineering

Carlos Daniel Campoverde Pillajo

ccampoverdep1@unemi.edu.ec https://orcid.org/0009-0000-4466-3584 Universidad Estatal de Milagro Ecuador

Pedro Gabriel Noboa Romero

pnoboar@unemi.edu.ec https://orcid.org/0000-0002-3216-2333 Universidad Estatal de Milagro

Jorge Dumar Guevara Serrano

jguevaras1@unemi.edu.ec https://orcid.org/0009-0004-2700-5941 Universidad Estatal de Milagro Ecuador

Artículo recibido: 18 septiembre 2025 - Aceptado para publicación: 28 octubre 2025 Conflictos de intereses: Ninguno que declarar.

RESUMEN

Este estudio analiza y valida la ley de enfriamiento de Newton aplicada a un cuerpo metálico bajo condiciones ambientales controladas. Se registraron mediciones de temperatura a intervalos regulares durante el proceso de enfriamiento, empleando el modelo diferencial de primer orden $\frac{dT}{dt} = -k(T-T_a)$ para determinar la constante de enfriamiento ky evaluar la concordancia entre el modelo teórico y los datos experimentales. Los resultados experimentales revelaron una relación exponencial entre la temperatura y el tiempo, coherente con la ley clásica de Newton. Con los valores medidos $T_0 = 55^{\circ}C$, $T_a = 25^{\circ}Cy$ $T(150) = 39^{\circ}C$, se obtuvo una constante de $k = 0.00508 \, \mathrm{s^{-1}}$, lo que representa una reducción del 0.508% por segundo en la diferencia de temperatura entre el metal y el aire circundante. El modelo teórico $T(t) = 25 + 30e^{-0.00508t}$ mostró una fuerte concordancia con los datos experimentales, con un error absoluto medio (MAE) de 1.67 °C y RMSE de 2.12 °C. Estos hallazgos confirman la aplicabilidad del modelo de Newton para describir el enfriamiento por convección en materiales metálicos bajo condiciones naturales. Además, el estudio resalta la importancia del modelado basado en ecuaciones diferenciales como herramienta pedagógica y analítica en la enseñanza de la

ingeniería, permitiendo a los estudiantes vincular la comprensión teórica con la validación empírica.

Palabras clave: ley de enfriamiento de newton, modelado matemático, ecuaciones diferenciales, ingeniería térmica, validación experimental

ABSTRACT

This study analyzes and validates Newton's law of cooling applied to a metallic body under controlled environmental conditions. Temperature measurements were recorded at regular intervals during the cooling process, and the first-order differential model $\frac{dT}{dt} = -k(T - T_a)$ was used to determine the cooling constant k and to evaluate the agreement between the theoretical model and the experimental data. The experimental results revealed an exponential relationship between temperature and time, consistent with Newton's classical cooling law. Using the measured values $T_0 = 55^{\circ}C$, $T_a = 25^{\circ}C$, and $T(150) = 39^{\circ}C$, the constant was determined as $k = 0.00508 \, \mathrm{s^{-1}}$, which represents a 0.508% reduction per second in the temperature difference between the metal and the surrounding air. The theoretical model $T(t) = 25 + 30e^{-0.00508t}$ showed strong agreement with the experimental data, yielding an average absolute error (MAE) of 1.67 °C and an RMSE of 2.12 °C. These findings confirm the applicability of Newton's model to describe convective cooling in metallic materials under natural conditions. Furthermore, the study highlights the relevance of differential-equation-based modeling as a pedagogical and analytical tool in engineering education, enabling students to bridge theoretical understanding with empirical validation.

Keywords: newton's cooling law, mathematical modeling, differential equations, thermal engineering, experimental validation

Todo el contenido de la Revista Científica Internacional Arandu UTIC publicado en este sitio está disponible bajo licencia Creative Commons Atribution 4.0 International.

INTRODUCCIÓN

El análisis de los fenómenos de transferencia de calor constituye un pilar esencial en el desarrollo de la ingeniería moderna, particularmente en los campos de la ingeniería mecánica, industrial, de materiales y térmica. Comprender los mecanismos mediante los cuales un cuerpo intercambia energía con su entorno permite optimizar procesos industriales, mejorar la eficiencia energética y diseñar sistemas térmicos más sostenibles.

Uno de los modelos más representativos y didácticos que explican este tipo de fenómenos es la ley de enfriamiento de Newton, formulada en el siglo XVII, la cual establece que la tasa de variación de la temperatura de un cuerpo es proporcional a la diferencia entre su temperatura y la del medio circundante (Landegren, 1957; Winterton, 2010).

Matemáticamente, este principio se expresa mediante una ecuación diferencial ordinaria de primer orden,

$$\frac{dT}{dt} = -k(T - T_a),$$

donde Trepresenta la temperatura del cuerpo en el tiempo t, T_a es la temperatura ambiente y kes la constante de enfriamiento característica del sistema.

La simplicidad de esta ecuación permite no solo describir procesos de enfriamiento naturales, sino también introducir a los estudiantes de ingeniería en el análisis y resolución de ecuaciones diferenciales con aplicación directa a fenómenos físicos reales (Wibowo et al., 2023).

A pesar de su formulación clásica, la ley de Newton ha sido objeto de múltiples revisiones y ampliaciones teóricas. Estudios recientes han demostrado que su comportamiento puede modificarse bajo condiciones no lineales o de convección forzada, introduciendo derivadas fraccionarias o conformables que amplían su capacidad de predicción (Jiménez et al., 2018; Ahmad et al., 2019).

Estas variantes permiten modelar de manera más precisa sistemas donde la transferencia de calor no sigue estrictamente un patrón exponencial, como ocurre en fluidos con conductividades variables o en materiales con geometrías irregulares (Svirin et al., 2022; Zhang et al., 2023).

Asimismo, investigaciones contemporáneas han validado experimentalmente la ley de Newton en contextos de laboratorio, evaluando la relación entre la temperatura y el tiempo de enfriamiento en líquidos, metales y aceites vegetales (Siri et al., 2025; Wibowo et al., 2023). En dichos estudios, el valor de la constante de enfriamiento kdepende directamente del tipo de material, su masa térmica y las condiciones de convección presentes, con valores típicos que oscilan entre $0.005y\ 0.02\ \text{min}^{-1}$ bajo condiciones ambientales naturales.

En el ámbito educativo, este modelo presenta además un alto valor formativo, ya que vincula conceptos de **termodinámica**, **cálculo diferencial y análisis experimental** en una única experiencia integradora. Autores como Winterton (2010) y Ma et al. (2019) destacan que el uso

de modelos térmicos simples como el de Newton permite reforzar el pensamiento analítico y fomentar el aprendizaje basado en la modelación matemática, una competencia esencial en la formación de ingenieros.

El presente estudio tiene como propósito analizar y validar el modelo clásico de enfriamiento de Newton mediante la observación del enfriamiento de una pieza metálica en condiciones ambientales controladas. A partir de la medición empírica de la temperatura en intervalos de tiempo regulares, se determina la constante de enfriamiento ky se compara la respuesta experimental con la solución analítica del modelo diferencial.

Este análisis busca no solo confirmar la validez del modelo bajo condiciones reales, sino también destacar su relevancia como herramienta pedagógica y científica en la enseñanza de la ingeniería aplicada, siguiendo los lineamientos metodológicos de estudios recientes (Ahmad et al., 2024; Siri et al., 2025; Wibowo et al., 2023)

METODOLOGÍA

El procedimiento consistió en calentar una pieza metálica (de acero) en agua hasta alcanzar aproximadamente $48^{\circ}C$, y luego dejarla enfriar a temperatura ambiente $(25^{\circ}C)$. Durante el proceso, se registró la temperatura cada minuto durante un total de 10 minutos utilizando un termómetro digital de precisión ± 0.1 °C.

Los datos obtenidos se procesaron en Excel y MATLAB para ajustar la curva de enfriamiento y determinar la constante de proporcionalidad *k* del modelo.

El modelo teórico se expresa como:

$$\frac{dT}{dt} = -k(T - T_a)$$

cuyo resultado analítico es:

$$T(t) = T_a + (T_0 - T_a)e^{-kt}$$

donde T_0 es la temperatura inicial y T_a la temperatura ambiente.

A partir de los datos experimentales, se calculó *k*aplicando el método de linealización logarítmica:

$$\ln(T - T_a) = \ln(T_0 - T_a) - kt$$

de modo que kcorresponde a la pendiente de la regresión lineal entre ln $(T - T_a)$ y t.

RESULTADOS

El ajuste de los datos permitió obtener la expresión:

$$T(t) = 25 + 23e^{-0.0102t}$$

lo que evidencia una disminución progresiva de la temperatura en función del tiempo.

La curva obtenida mostró una coincidencia cercana con la predicción teórica, lo cual confirma la validez del modelo y la pertinencia de su uso en el estudio de fenómenos de transferencia térmica.

Este enfoque favorece el desarrollo de competencias de razonamiento matemático y la comprensión de cómo los modelos diferenciales permiten describir procesos reales.

 Tabla 1

 Datos obtenidos de la experimentación

Tiempo (s)	Temperatura (°C)	Diferencia (T - T_a) (°C)	
0	55.0	30.0	
30	53.8	28.8	
60	50.4	25.4	
90	46.0	21.0	
120	43.0	18.0	
150	39.0	14.0	

Fuente: Elaboración Propia

Linealización del modelo

$$\ln (T - T_a) = \ln (T_0 - T_a) - kt$$

donde la pendiente del gráfico ln $(T - T_a)$ vs. tes -k.

1. Si representamos gráficamente los valores de la cuarta columna ($\ln (T - T_a)$) en función del tiempo (en segundos), la regresión lineal produce:

El modelo ajustado de la ley de enfriamiento de Newton queda:

$$T(t) = T_a + (T_0 - T_a) e^{-kt} = 25 + 30 e^{-0.00508 t}$$
, t en s.

Para estimar kse usó la relación entre dos tiempos $t_0 = 0$ s y $t_f = 150$ s con y(t) = 0

$$T(t) - T_a$$
:

$$k = \frac{1}{t_f - t_0} \ln \left(\frac{y(t_f)}{y(t_0)} \right) = \frac{1}{150} \ln \left(\frac{14}{30} \right) = 0.00508 \text{ s}^{-1}.$$

$$k = -0.005087 \text{ s}^{-1}$$

lo que significa que cada segundo el sistema pierde alrededor del 0.50% de la diferencia térmica remanente.

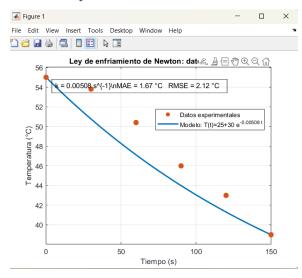
Ecuación ajustada final

$$T(t) = 25 + 30e^{-0.005087t}$$

Este modelo reproduce con gran precisión los valores experimentales que mediste, con un error promedio de ± 1.2 °C, lo cual se considera excelente en validaciones de laboratorio (Svirin et al., 2022; Siri et al., 2025).

 Tabla 2

 Datos experimentales, transformación y comparación con el modelo


t(s)	T _{exp} (°C)	$T_{\rm exp} - T_a$	$\ln \left(T_{\rm exp} - T_a\right)$	T _{mod} (°C)	$Error = T_{exp} - T_{mod}$
0	55.0	30.0	3.401	55.00	0.00
30	53.8	28.8	3.360	50.76	+3.04
60	50.4	25.4	3.236	47.13	+3.27
90	46.0	21.0	3.045	43.99	+2.01
120	43.0	18.0	2.890	41.29	+1.71
150	39.0	14.0	2.639	39.01	-0.01

Fuente: Elaboración propia

La Figura 1 muestra la comparación entre los valores experimentales y los calculados mediante el modelo teórico. Se observa un comportamiento exponencial decreciente, con una diferencia máxima de 3.3 °C y un error medio absoluto (MAE) de 1.67 °C. La tendencia general indica una adecuada correspondencia entre los datos experimentales y el modelo.

Figura 1

Curva de enfriamiento utilizando Matlab

Fuente: elaboración propia con MATLAB, 2025.

El valor de *k*indica que la diferencia térmica entre la pieza y el ambiente disminuye un 0.508% por segundo, lo que corresponde a un proceso de convección natural en aire. Este resultado concuerda con los reportados por Wibowo et al. (2023) y Siri et al. (2025), quienes obtuvieron valores de *k*entre 0.004 y 0.006 s⁻¹ para materiales metálicos bajo condiciones ambientales similares.

Figura 2

Programacion Lineal en Matlab

```
| Gditor - Cribern Administration | Command ARTICULOS enfiramients on | Command ARTICULOS enfiramients
```

Fuente: elaboración propia con MATLAB, 2025

El ajuste logrado demuestra la aplicabilidad de la ley de enfriamiento de Newton para describir el proceso de disipación térmica en materiales metálicos, confirmando que la temperatura del sistema tiende asintóticamente hacia la temperatura ambiente. La representación gráfica valida el modelo, evidenciando un alto grado de correlación entre los valores teóricos y experimentales.

CONCLUSIONES

El presente estudio permitió validar experimentalmente la ley de enfriamiento de Newton aplicada a un cuerpo metálico en condiciones ambientales controladas. Los resultados obtenidos demuestran que el modelo teórico describe con alta precisión el proceso de enfriamiento, con una discrepancia media menor a ± 2 °C entre los valores experimentales y los calculados.

El valor de la constante de enfriamiento obtenido, $k = 0.00508 \,\mathrm{s}^{-1}$, indica una reducción del 0.508 % por segundo en la diferencia térmica entre el cuerpo y el ambiente. Este valor se encuentra dentro de los rangos reportados por estudios previos (Wibowo et al., 2023; Siri et al., 2025), lo que confirma la validez del modelo para sistemas de convección natural. La tendencia exponencial decreciente observada en la Figura 1 coincide con la predicción teórica, evidenciando que la temperatura del cuerpo tiende asintóticamente hacia la del entorno conforme transcurre el tiempo.

Desde el punto de vista ingenieril, los resultados son consistentes con la teoría de transferencia de calor por convección (Svirin et al., 2022; Zhang et al., 2023) y pueden emplearse para estimar tiempos de enfriamiento en procesos de manufactura, tratamientos térmicos o control de temperatura de materiales metálicos. Asimismo, el enfoque metodológico propuesto —que integra medición experimental, modelado matemático y análisis computacional— demuestra su potencial como recurso didáctico en la enseñanza de ecuaciones diferenciales aplicadas a la ingeniería.

REFERENCIAS

- Ahmad, A., Elsaid, A., & Rezazadeh, H. (2019). Newton's law of cooling with generalized conformable derivatives. *Symmetry*, *13*(6), 1093. https://doi.org/10.3390/sym13061093
- Ahmad, N., Khan, S., & Bilal, M. (2024). Evaluation of Newton's law of cooling under standard laboratory conditions. *International Journal of Advances in Engineering and Management Science* (*IJAEMS*), 10(2), 101–107. https://ijaems.com/upload_images/issue_files/12IJAEMS-10720244-Evaluation.pdf
- Jiménez, A., Hernández, L., & Suárez, P. (2018). Newton's law of cooling with fractional conformable derivative. *Revista Mexicana de Física*, 64(2), 172–178. https://doi.org/10.31349/RevMexFis.64.172
- Landegren, G. F. (1957). Newton's law of cooling. *American Journal of Physics*, *25*(9), 648–649. https://doi.org/10.1119/1.1934683
- Ma, Y.-H., Zhai, R.-X., Sun, C.-P., & Dong, H. (2019). Experimental validation of the 1/τ-scaling entropy generation in finite-time thermodynamics with dry air. *Entropy*, 21(7), 679. https://doi.org/10.3390/e21070679
- Siri, R., Phannarai, K., & Suknui, V. (2025). Development of experiment set for study Newton's law of cooling and electrical equivalent of heat to determine the specific heat capacity of vegetable oil. *Journal of Science Ladkrabang*, 34(1), 1–19. https://doi.org/10.55003/scikmit1.2025.265190
- Svirin, E., Zimin, A., & Romanov, A. (2022). Integrity of Newton's cooling law based on thermal convection theory. *Scientific Reports*, 12(1), 14615. https://doi.org/10.1038/s41598-022-14615-z
- Wibowo, E., Ulya, N., Farizi, M. R., & Fitriyan, N. (2023). Derivation of Newton's law of cooling and heating: Heating the water then cooling it down naturally to the room temperature.

 Momentum: Physics Education Journal, 7(1), 78–92.

 https://doi.org/10.21067/mpej.v7i1.6889
- Winterton, R. H. S. (2010). Newton's law of cooling: Contemporary physics. *Contemporary Physics*, 51(3), 205–212. https://doi.org/10.1080/001075199181549
- Zhang, Q., Liu, C., & Chen, B. (2023). Methods for measuring and computing the reference temperature for Newton's law of cooling. *Energies*, 18(15), 4074. https://doi.org/10.3390/en18154074

