Vol. 11/ Núm. 2 2024 pág. 2159
REFERENCIAS
Aghapanah, H., Rasti, R., Tabesh, F., Pouraliakbar, H., Sanei, H., & Kermani, S. (2025).
MECardNet: A novel multi-scale convolutional ensemble model with adaptive deep
supervision for precise cardiac MRI segmentation. Biomedical Signal Processing and
Control, 100, 106919. https://doi.org/10.1016/j.bspc.2024.106919
Aji, N. B., Kurnianingsih, K., Masuyama, N., & Nojima, Y. (2024). CNN-LSTM for Heartbeat
Sound Classification. JOIV : International Journal on Informatics Visualization, 8(2), 735.
https://doi.org/10.62527/joiv.8.2.2115
Ayshwarya, B., George, A., & M, D. (2024). Heart Failure Prediction for a Patient Using Hybrid
African Buffalo Optimization with Naive Bayes Machine Learning Techniques (pp. 141–
154). https://doi.org/10.1007/978-981-99-8612-5_12
Dhaka, P., Sehrawat, R., & Bhutani, P. (2024). An efficient heart disease prediction model using
particle swarm–optimized ensemble classifier model. In Securing Next-Generation
Connected Healthcare Systems (pp. 123–135). Elsevier. https://doi.org/10.1016/B978-0-
443-13951-2.00005-2
Garai, S., Kashyap, P., Irfan, S., & Pareek, A. (2024). Cardiac Disease Risks Pattern Recognition
Using Advanced Predictive Analytics. In Healthcare Analytics and Advanced
Computational Intelligence (pp. 164–179). CRC Press.
https://doi.org/10.1201/9781032624891-12
Hernly, E., Hu, H., & Laskin, J. (2024). MSIGen: An Open-Source Python Package for Processing
and Visualizing Mass Spectrometry Imaging Data. Journal of the American Society for Mass
Spectrometry, 35(10), 2315–2323. https://doi.org/10.1021/jasms.4c00178
Höhn, M., Schwindt-Drews, S., Hahn, S., Patyna, S., Büttner, S., & Kohlhammer, J. (2024).
RenalViz: Visual analysis of cohorts with chronic kidney disease. Computers & Graphics,
125, 104120. https://doi.org/10.1016/j.cag.2024.104120
Ijuin, S., Inoue, A., Hifumi, T., Taira, T., Suga, M., Nishimura, T., Sakamoto, T., Kuroda, Y., &
Ishihara, S. (2025). Analysis of factors associated with favorable neurological outcomes in
patients with initial PEA who underwent ECPR - A secondary analysis of the SAVE-J II
study. Journal of Critical Care, 85, 154917. https://doi.org/10.1016/j.jcrc.2024.154917
Li, H., & Xia Dou, Y. (2025). Resource optimization in smart electronic health systems using IoT
for heart disease prediction via feedforward neural networks. Cluster Computing, 28(1), 21.
https://doi.org/10.1007/s10586-024-04726-7
Meyer, L., Eling, N., & Bodenmiller, B. (2024). cytoviewer: an R/Bioconductor package for
interactive visualization and exploration of highly multiplexed imaging data. BMC
Bioinformatics, 25(1), 9. https://doi.org/10.1186/s12859-023-05546-z