Biomarcadores y valores antropométricos para la tasa de filtrado glomerular

Autores/as

DOI:

https://doi.org/10.69639/arandu.v11i2.317

Palabras clave:

filtración glomerular, creatinina, Cistatina C, marcadores, enfermedad renal

Resumen

Los biomarcadores y los valores antropométricos son herramientas fundamentales para evaluar la tasa de filtración glomerular (TFG), un indicador clave de la función renal. La evaluación precisa de la TFG es crucial para la detección y el monitoreo de la enfermedad renal crónica. Este estudio tuvo como objetivo principal evaluar el uso de biomarcadores, como la creatinina sérica y la cistatina C, y los factores antropométricos, como peso y edad, en la estimación de la TFG. La metodología aplicada fue de carácter exploratorio, con un diseño narrativo documental y un enfoque explicativo. Los resultados revelaron que tanto la creatinina sérica como la cistatina C pueden ser útiles como marcadores para estimar la TFG; sin embargo, su precisión depende del contexto y la población estudiada. Asimismo, se identificó que factores como el peso y la edad influyen significativamente en la estimación de la TFG, sugiriendo la necesidad de ajustar estos valores para mejorar la precisión en distintas poblaciones. Las ecuaciones CKD-EPI, MDRD y EKFC fueron frecuentemente mencionadas en los estudios revisados, destacando la ecuación CKD-EPI como la más utilizada, probablemente debido a su fiabilidad en una amplia gama de escenarios clínicos. En conclusión, ambos biomarcadores tienen valor clínico para la estimación de la TFG, pero es esencial considerar las características específicas de cada población al seleccionar el método de evaluación más adecuado. Esta revisión subraya la importancia de ajustar los factores antropométricos y de utilizar ecuaciones precisas para asegurar evaluaciones adecuadas de la función renal en diversos grupos de pacientes.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adingwupu, O. M., Barbosa, E. R., Palevsky, P. M., Vassalotti, J. A., Levey, A. S., & Inker, L. A. (2023). Cystatin C as a GFR Estimation Marker in Acute and Chronic Illness: A Systematic Review. Kidney Medicine, 5(12).

https://doi.org/10.1016/j.xkme.2023.100727

Anggraini, D., & Adelin, P. (2023). Correlation between Anthropometric Measurement and Kidney Function in the Elderly to Detection of Chronic Kidney Disease. INDONESIAN JOURNAL OF CLINICAL PATHOLOGY AND MEDICAL LABORATORY, 29(3), Article 3. https://doi.org/10.24293/ijcpml.v29i3.2019

Beunders, R., Donato, L. J., Groenendael, R. van, Arlt, B., Carvalho-Wodarz, C., Schulte, J., Coolen, A. C., Lieske, J. C., Meeusen, J. W., Jaffe, A. S., & Pickkers, P. (2023). Assessing GFR With Proenkephalin. Kidney International Reports, 8(11), 2345-2355. https://doi.org/10.1016/j.ekir.2023.08.006

Björk, J., Nyman, U., Larsson, A., Delanaye, P., & Pottel, H. (2021). Estimation of the glomerular filtration rate in children and young adults by means of the CKD-EPI equation with age-adjusted creatinine values. Kidney International, 99(4), 940-947. https://doi.org/10.1016/j.kint.2020.10.017

Borjas, J., Lugo, E., Llamazares, L., & Martínez, M. (2019). Performance of the equations to estimate the glomerular filtration rate in Mexican patients receiving kidney transplantation. Gaceta Médica de México, 155(3).

https://doi.org/10.24875/GMM.M18004335

Bukabau, J. B., Yayo, E., Gnionsahé, A., Monnet, D., Pottel, H., Cavalier, E., Nkodila, A., Makulo, J. R. R., Mokoli, V. M., Lepira, F. B., Nseka, N. M., Krzesinski, J.-M., Sumaili, E. K., & Delanaye, P. (2019). Performance of creatinine- or cystatin C–based equations to estimate glomerular filtration rate in sub-Saharan African populations. Kidney International, 95(5), 1181-1189. https://doi.org/10.1016/j.kint.2018.11.045

Carrero, J.-J., Fu, E. L., Sang, Y., Ballew, S., Evans, M., Elinder, C.-G., Barany, P., Inker, L. A., Levey, A. S., Coresh, J., & Grams, M. E. (2023). Discordances Between Creatinine- and Cystatin C–Based Estimated GFR and Adverse Clinical Outcomes in Routine Clinical Practice. American Journal of Kidney Diseases, 82(5), 534-542.

https://doi.org/10.1053/j.ajkd.2023.04.002

Castillo, Y., Delfino, F. A., Mauro, V. M., Trevisani, H., Fairman, E. B., Charask, A. A., Raffaeli, A., Barrero, C. M., Castillo Costa, Y. B., Delfino, F. A., Mauro, V. M., Trevisani, H., Fairman, E. B., Charask, A. A., Raffaeli, A., & Barrero, C. M. (2019). Cálculo dinámico del filtrado glomerular en los pacientes con insuficiencia cardíaca descompensada. Revista argentina de cardiología, 87(2), 131-136.

https://doi.org/10.7775/rac.es.v87.i2.13811

Chen, D. C., Lu, K., Scherzer, R., Lees, J. S., Rutherford, E., Mark, P. B., Potok, O. A., Rifkin, D. E., Ix, J. H., Shlipak, M. G., & Estrella, M. M. (2024). Cystatin C- and Creatinine-based Estimated GFR Differences: Prevalence and Predictors in the UK Biobank. Kidney Medicine, 6(4). https://doi.org/10.1016/j.xkme.2024.100796

Chen, D. C., Potok, O. A., Rifkin, D., & Estrella, M. M. (2022). Advantages, Limitations, and Clinical Considerations in Using Cystatin C to Estimate GFR. Kidney360, 3(10), 1807. https://doi.org/10.34067/KID.0003202022

Cheuiche, A. V., Queiroz, M., Azeredo-da-Silva, A. L. F., & Silveiro, S. P. (2019). Performance of Cystatin C-Based Equations for Estimation of Glomerular Filtration Rate in Diabetes Patients: A Prisma-Compliant Systematic Review and Meta-Analysis. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-018-38286-9

Delanaye, P., Pottel, H., Cavalier, E., Flamant, M., Stehlé, T., & Mariat, C. (2024). Diagnostic standard: Assessing glomerular filtration rate. Nephrology Dialysis Transplantation, 39(7), 1088-1096. https://doi.org/10.1093/ndt/gfad241

den Bakker, E., Gemke, R., van Wijk, J. A. E., Hubeek, I., Stoffel-Wagner, B., & Bökenkamp, A. (2019). Combining GFR estimates from cystatin C and creatinine-what is the optimal mix? Pediatric Nephrology (Berlin, Germany), 33(9), 1553-1563. https://doi.org/10.1007/s00467-018-3973-8

Domislovic, M., Domislovic, V., Fucek, M., Jelakovic, A., Gellineo, L., Dika, Z., & Jelakovic, B. (2022). Should the CKD EPI Equation Be Used for Estimation of the Glomerular Filtration Rate in Obese Subjects? Kidney and Blood Pressure Research, 47(10), 597-604. https://doi.org/10.1159/000526115

Ebert, N., & Schaeffner, E. (2019). New biomarkers for estimating glomerular filtration rate. Journal of Laboratory and Precision Medicine, 3(0), Article 0. https://doi.org/10.21037/jlpm.2018.08.07

Foreman, K. J., Marquez, N., Dolgert, A., Fukutaki, K., Fullman, N., McGaughey, M., Pletcher, M. A., Smith, A. E., Tang, K., Yuan, C.-W., Brown, J. C., Friedman, J., He, J., Heuton, K. R., Holmberg, M., Patel, D. J., Reidy, P., Carter, A., Cercy, K., … Murray, C. J. L. (2019). Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016–40 for 195 countries and territories. The Lancet, 392(10159), 2052-2090. https://doi.org/10.1016/S0140-6736(18)31694-5

Fu, E. L., Levey, A. S., Coresh, J., Elinder, C.-G., Rotmans, J. I., Dekker, F. W., Paik, J. M., Barany, P., Grams, M. E., Inker, L. A., & Carrero, J.-J. (2023). Accuracy of GFR Estimating Equations in Patients with Discordances between Creatinine and Cystatin C-Based Estimations. Journal of the American Society of Nephrology, 34(7), 1241. https://doi.org/10.1681/ASN.0000000000000128

Fukuma, S., Ikenoue, T., Bragg-Gresham, J., Norton, E., Yamada, Y., Kohmoto, D., & Saran, R. (2020). Body mass index change and estimated glomerular filtration rate decline in a middle-aged population: Health check-based cohort in Japan. BMJ Open, 10(9), e037247. https://doi.org/10.1136/bmjopen-2020-037247

Gottlieb, E. R., Estiverne, C., Tolan, N. V., Melanson, S. E. F., & Mendu, M. L. (2023). Estimated GFR With Cystatin C and Creatinine in Clinical Practice: A Retrospective Cohort Study. Kidney Medicine, 5(3). https://doi.org/10.1016/j.xkme.2023.100600

Hazer, B., Onder, F. O., Metli, N. B., Aslan, S. B., Yalcin, E., & Akyuz, M. (2023). Accuracy of the methods used to estimate glomerular filtration rate compared to 24-hour urinary creatinine clearance in patients with chronic spinal cord injury. The Journal of Spinal Cord Medicine, 46(2), 231-236. https://doi.org/10.1080/10790268.2021.1975084

Iacone, R., Guida, B., Scanzano, C., Iaccarino Idelson, P., D’Elia, L., Barbato, A., & Strazzullo, P. (2020). Estimation of glomerular filtration rate from skeletal muscle mass. A new equation independent from age, weight, gender, and ethnicity. Nutrition, Metabolism and Cardiovascular Diseases, 30(12), 2312-2319.

https://doi.org/10.1016/j.numecd.2020.07.027

Inker, L. A., Eneanya, N. D., Coresh, J., Tighiouart, H., Wang, D., Sang, Y., Crews, D. C., Doria, A., Estrella, M. M., Froissart, M., Grams, M. E., Greene, T., Grubb, A., Gudnason, V., Gutiérrez, O. M., Kalil, R., Karger, A. B., Mauer, M., Navis, G., … Levey, A. S. (2021). New Creatinine- and Cystatin C–Based Equations to Estimate GFR without Race. New England Journal of Medicine. https://doi.org/10.1056/NEJMoa2102953

Jamshidi, P., Najafi, F., Mostafaei, S., Shakiba, E., Pasdar, Y., Hamzeh, B., & Moradinazar, M. (2020). Investigating associated factors with glomerular filtration rate: Structural equation modeling. BMC Nephrology, 21, 30. https://doi.org/10.1186/s12882-020-1686-2

Kang, E., Han, S. S., Kim, J., Park, S. K., Chung, W., Oh, Y. K., Chae, D.-W., Kim, Y.-S., Ahn, C., & Oh, K.-H. (2020). Discrepant glomerular filtration rate trends from creatinine and cystatin C in patients with chronic kidney disease: Results from the KNOW-CKD cohort. BMC Nephrology, 21(1), 280. https://doi.org/10.1186/s12882-020-01932-4

Koch, V. H. (2021). Obesity Facts and Their Influence on Renal Function Across the Life Span. Frontiers in Medicine, 8, 704409. https://doi.org/10.3389/fmed.2021.704409

Lee, H.-S., Bae, G.-E., Lee, J. E., & Park, H.-D. (2023). Effect of Two Cystatin C Reagents and Four Equations on Glomerular Filtration Rate Estimations After Standardization. Annals of Laboratory Medicine, 43(6), 565-573. https://doi.org/10.3343/alm.2023.43.6.565

Li, D., Yin, W., Yi, Y., Zhang, B., Zhao, J., Zhu, C., Ma, R., Zhou, L., Xie, Y., Wang, J., Zuo, S., Liu, K., Hu, C., Zhou, G., & Zuo, X. (2019). Development and validation of a more accurate estimating equation for glomerular filtration rate in a Chinese population. Kidney International, 95(3), 636-646. https://doi.org/10.1016/j.kint.2018.10.019

Lin, Y.-C., Lai, Y.-J., Lin, Y.-C., Peng, C.-C., Chen, K.-C., Chuang, M.-T., Wu, M.-S., & Chang, T.-H. (2019). Effect of weight loss on the estimated glomerular filtration rates of obese patients at risk of chronic kidney disease: The RIGOR-TMU study. Journal of Cachexia, Sarcopenia and Muscle, 10(4), 756-766. https://doi.org/10.1002/jcsm.12423

Ma, Y., Zhan, J., & Xu, G. (2021). Reference values of glomerular filtration rate for healthy adults in southern China: A cross-sectional survey. Therapeutic Advances in Chronic Disease, 12, 20406223211035287. https://doi.org/10.1177/20406223211035287

Marzuillo, P., Grandone, A., Di Sessa, A., Guarino, S., Diplomatico, M., Umano, G. R., Polito, C., La Manna, A., Perrone, L., & Miraglia del Giudice, E. (2019). Anthropometric and Biochemical Determinants of Estimated Glomerular Filtration Rate in a Large Cohort of Obese Children. Journal of Renal Nutrition, 28(5), 359-362.

https://doi.org/10.1053/j.jrn.2018.01.001

Mooney, J. F., Croal, B. L., Cassidy, S., Lee, V. W., Chow, C. K., Cuthbertson, B. H., & Hillis, G. S. (2019). Relative value of cystatin C and creatinine-based estimates of glomerular filtration rate in predicting long-term mortality after cardiac surgery: A cohort study. BMJ Open, 9(9), e029379. https://doi.org/10.1136/bmjopen-2019-029379

Ntaios, G., Brederecke, J., Ojeda, F. M., Zeller, T., Blankenberg, S., & Schnabel, R. B. (2024). New race-free creatinine- and cystatin C-based equations for the estimation of glomerular filtration rate and association with cardiovascular mortality in the AtheroGene study. Internal and Emergency Medicine, 19(3), 697-703. https://doi.org/10.1007/s11739-023-03529-9

Nyman, U., Grubb, A., Lindström, V., & Björk, J. (2019). Accuracy of GFR estimating equations in a large Swedish cohort: Implications for radiologists in daily routine and research. Acta Radiologica, 58(3), 367-375. https://doi.org/10.1177/0284185116646143

Pöge, U., Gerhardt, T., & Woitas, R. P. (2008). Equations to Estimate GFR Using Serum Cystatin C in Kidney Transplant Recipients. American Journal of Kidney Diseases, 52(2), 383-384. https://doi.org/10.1053/j.ajkd.2008.04.030

Potok, O. A., Ix, J. H., Shlipak, M. G., Bansal, N., Katz, R., Kritchevsky, S. B., & Rifkin, D. E. (2022). Cystatin C- and Creatinine-Based Glomerular Filtration Rate Estimation Differences and Muscle Quantity and Functional Status in Older Adults: The Health, Aging, and Body Composition Study. Kidney Medicine, 4(3), 100416. https://doi.org/10.1016/j.xkme.2022.100416

Potok, O. A., Rifkin, D. E., Ix, J. H., Shlipak, M. G., Satish, A., Schneider, A., Mielke, N., Schaeffner, E., & Ebert, N. (2023). Estimated GFR Accuracy When Cystatin C– and Creatinine-Based Estimates Are Discrepant in Older Adults. Kidney Medicine, 5(5), 100628. https://doi.org/10.1016/j.xkme.2023.100628

Pottel, H., Björk, J., Rule, A. D., Ebert, N., Eriksen, B. O., Dubourg, L., Vidal-Petiot, E., Grubb, A., Hansson, M., Lamb, E. J., Littmann, K., Mariat, C., Melsom, T., Schaeffner, E., Sundin, P.-O., Åkesson, A., Larsson, A., Cavalier, E., Bukabau, J. B., … Delanaye, P. (2023). Cystatin C–Based Equation to Estimate GFR without the Inclusion of Race and Sex. New England Journal of Medicine, 388(4), 333-343. https://doi.org/10.1056/NEJMoa2203769

Pottel, H., Delanaye, P., & Cavalier, E. (2024). Exploring Renal Function Assessment: Creatinine, Cystatin C, and Estimated Glomerular Filtration Rate Focused on the European Kidney Function Consortium Equation. Annals of Laboratory Medicine, 44(2), 135. https://doi.org/10.3343/alm.2023.0237

Qu, Y., Qin, Q.-X., Wang, D.-L., Li, J.-T., Zhao, J.-W., An, K., Li, J.-Y., Mao, Z.-J., Min, Z., Xiong, Y.-J., & Xue, Z. (2023). Estimated glomerular filtration rate is a biomarker of cognitive impairment in Parkinson’s disease. Frontiers in Aging Neuroscience, 15. https://doi.org/10.3389/fnagi.2023.1130833

Rasalkar1, K., Kashamsetty2, N., B, & Karthik3, i S. (2020). Influence of Anthropometric Measurements on Serum Creatinine, Urea and eGFR in Healthy Adolescent Subjects. Journal of Evidence based Medicine and Healthcare, 7(36), 1-5.

Safdar, A., Akram, W., Ahmad Khan, M., & Muhammad, S. (2023). Optimal Glomerular Filtration Rate Equations for Various Age Groups, Disease Conditions and Ethnicities in Asia: A Systematic Review. Journal of Clinical Medicine, 12(5), Article 5. https://doi.org/10.3390/jcm12051822

Scarr, D., Lovblom, L. E., Bjornstad, P., Perkins, B. A., Kugathasan, L., Cherney, D. Z. I., & Lovshin, J. A. (2023). Estimated glomerular filtration rate calculated by serum creatinine lacks precision and accuracy in adults with type 2 diabetes with preserved renal function. Journal of Diabetes and its Complications, 37(9), 108562.

https://doi.org/10.1016/j.jdiacomp.2023.108562

Silveiro, S. P., & Zelmanovitz, T. (2019). Does twenty-four-hour biological variation of serum creatinine and cystatin C influence GFR estimation? Journal of Laboratory and Precision Medicine, 3(0), Article 0. https://doi.org/10.21037/jlpm.2018.07.08

Spencer, S., Desborough, R., & Bhandari, S. (2023). Should Cystatin C eGFR Become Routine Clinical Practice? Biomolecules, 13(7), Article 7. https://doi.org/10.3390/biom13071075

Swolinsky, J. S., Nerger, N. P., Leistner, D. M., Edelmann, F., Knebel, F., Tuvshinbat, E., Lemke, C., Roehle, R., Haase, M., Costanzo, M. R., Rauch, G., Mitrovic, V., Gasanin, E., Meier, D., McCullough, P. A., Eckardt, K.-U., Molitoris, B. A., & Schmidt-Ott, K. M. (2021). Serum creatinine and cystatin C-based estimates of glomerular filtration rate are misleading in acute heart failure. ESC Heart Failure, 8(4), 3070-3081. https://doi.org/10.1002/ehf2.13404

Uçucu, S., & Ayan, D. (2021). Comparison of the diagnostic accuracy of CKD-EPI cystatin-C, CKD-EPI creatinine and 24-hour creatinine clearance for estimating GFR: A preliminary study. Cukurova Medical Journal, 46(1), Article 1.

Vela-Bernal, S., Facchetti, R., Dell’Oro, R., Quarti-Trevano, F., Lurbe, E., Mancia, G., & Grassi, G. (2023). Anthropometric Measures of Adiposity as Markers of Kidney Dysfunction: A Cross-Sectional Study. High Blood Pressure & Cardiovascular Prevention, 30(5), 467-474. https://doi.org/10.1007/s40292-023-00600-6

Wang, Y., Adingwupu, O. M., Shlipak, M. G., Doria, A., Estrella, M. M., Froissart, M., Gudnason, V., Grubb, A., Kalil, R., Mauer, M., Rossing, P., Seegmiller, J., Coresh, J., Levey, A. S., & Inker, L. A. (2023). Discordance Between Creatinine-Based and Cystatin C–Based Estimated GFR: Interpretation According to Performance Compared to Measured GFR. Kidney Medicine, 5(10), 100710.

https://doi.org/10.1016/j.xkme.2023.100710

Wang, Y., Levey, A. S., Inker, L. A., Jessani, S., Bux, R., Samad, Z., Khan, A. R., Karger, A. B., Allen, J. C., & Jafar, T. H. (2021). Performance and Determinants of Serum Creatinine and Cystatin C–Based GFR Estimating Equations in South Asians. Kidney International Reports, 6(4), 962-975. https://doi.org/10.1016/j.ekir.2021.01.005

Yan, A. F., Williams, M. Y., Shi, Z., Oyekan, R., Yoon, C., Bowen, R., & Chertow, G. M. (2024). Bias and Accuracy of Glomerular Filtration Rate Estimating Equations in the US: A Systematic Review and Meta-Analysis. JAMA Network Open, 7(3), e241127. https://doi.org/10.1001/jamanetworkopen.2024.1127

Zapatero, A., Barba, R., Gonzalez, N., Losa, J. E., Plaza, S., Canora, J., & Marco, J. (2021). Influence of Obesity and Malnutrition on Acute Heart Failure. Revista Española de Cardiología (English Edition), 65(5), 421-426. https://doi.org/10.1016/j.rec.2011.09.014

Zou, L.-X., Sun, L., Nicholas, S. B., Lu, Y., K, S. S., & Hua, R. (2020). Comparison of bias and accuracy using cystatin C and creatinine in CKD-EPI equations for GFR estimation. European Journal of Internal Medicine, 80, 29-34. https://doi.org/10.1016/j.ejim.2020.04.044

Descargas

Publicado

2024-10-17

Cómo citar

Parrales Pincay, I. G., Llinin Llinin , J. M., Jiménez Pezantez , P. R., Campuzano Loor , J. Y., & Mina Ortiz, J. B. (2024). Biomarcadores y valores antropométricos para la tasa de filtrado glomerular. Arandu UTIC, 11(2), 904–919. https://doi.org/10.69639/arandu.v11i2.317

Número

Sección

Psicología y Ciencias de la Salud

Artículos más leídos del mismo autor/a